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13:00–13:50 Shoji Toyota (SOKENDAI)
Invariance Learning based on Label Hierarchy

14:00–14:50 Sho Sonoda (RIKEN AIP)
Ridgelet Transforms for Neural Networks on Manifolds and
Hilbert Spaces

15:00–15:50 Tomonari Sei (The University of Tokyo)
Ushio Tanaka (Osaka Metropolitan University)
Stein-type distributions on Riemannian manifolds

16:10–17:00 Tomasz Skalski (Wroclaw University of Science and Technology:
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On LASSO and SLOPE estimators and their pattern recovery

17:10–18:00 Carlos Améndola (Technical University of Berlin)
Likelihood geometry of correlation models



• October 21 (Friday)

9:00– 9:50 Piotr Zwiernik (University of Toronto)
Mixed convex exponential families and locally associated graphical
models

11:00–11:50 Koichi Tojo (RIKEN Center for Advanced Intelligence Project)
Classification problem of invariant q-exponential families on ho-
mogeneous spaces

13:50–14:40 Yoshihiko Konno (Osaka Metropolitan University)
Adaptive shrinkage of singular values for a low-rank matrix mean
when a covariance matrix is unknown

14:50–15:40 Satoshi Kuriki (The Institute of Statistical Mathematics)
Expected Euler characteristic heuristic for smooth Gaussian ran-
dom fields with inhomogeneous marginals

16:00–16:50 Piotr Graczyk (LAREMA, University of Angers)
Pattern recovery by SLOPE
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Invariance Learning based on Label Hierarchy

Shoji Toyota

The Graduate University for Advanced Studies (SOKENDAI)

Training data used in machine learning may contain features that are spuriously cor-

related to the labels of data. Deep Neural Networks (DNNs) often learn such biased

correlations embedded in training data and hence may fail to predict desired labels of test

data generated by a different distribution from one to provide training data. To solve the

problem, Invariance Learning (IL) is a rapidly developed approach to overcome the issue

of biased correlation, which is caused by some bias in the distribution of a training dataset

(e.g., [1]). IL estimates a predictor invariant to the change of distributions, aiming at

keeping good performance in unseen distributions as well as in the training distributions.

While the IL approach has attracted much attention, requiring training data from

multiple distributions may hinder wide applications in practice; preparing training data

in many distributions often involves expensive data annotation.

To mitigate the problem of annotation cost, we propose a novel IL framework for the

situation where the training data of target classification is given in only one distribution,

while the task of higher label hierarchy, which needs lower annotation cost, has data

from multiple distributions. The new IL framework significantly reduces the annotation

cost in comparison with previous IL methods; we need exhausting annotation of original

classes only for one distribution and just causaer labels for other distributions. Numerical

simulations and theoretical analysis verify the effectiveness of our framework.

References

[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant Risk Minimization.

arXiv:1907.02893, 2019.



Ridgelet Transforms for Neural Networks on
Manifolds and Hilbert Spaces

Sho Sonoda
RIKEN AIP, Tokyo 103–0027 Japan

sho.sonoda@riken.jp

Abstract

To investigate how neural network parameters are organized and arranged, it is
easier to study the distribution of parameters than to study the parameters in each
neuron. The ridgelet transform is a pseudo-inverse operator (or an analysis operator)
that maps a given function f to the parameter distribution γ so that a network

S[γ](x) :=

∫
Rm×R

γ(a, b)σ(a · x− b)dadb, x ∈ Rm

represents f , i.e., S[γ] = f . For depth-2 fully-connected networks on Euclidean space,
the ridgelet transform has been discovered up to the closed-form expression, thus we
could describe how the parameters are organized. However, for a variety of modern
neural network architectures, the closed-form expression has not been known . Recently,
our research group has developed a systematic scheme to derive ridgelet transforms
for fully-connected layers on manifolds (noncompact symmetric spaces G/K) (Sonoda
et al., 2022b) and for group convolution layers on abstract Hilbert spaces H (Sonoda
et al., 2022a). In this talk, the speaker will explain a natural way to derive those ridgelet
transforms.

References

S. Sonoda, I. Ishikawa, and M. Ikeda. Universality of Group Convolutional Neural Networks Based
on Ridgelet Analysis on Groups. In Advances in Neural Information Processing Systems 35, 2022a.

S. Sonoda, I. Ishikawa, and M. Ikeda. Fully-Connected Network on Noncompact Symmetric Space and
Ridgelet Transform based on Helgason-Fourier Analysis. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, 2022b.
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Stein-type distributions on Riemannian manifolds

Tomonari Sei (The University of Tokyo)∗1

Ushio Tanaka (Osaka Metropolitan University)∗2

1. Stein-type distributions on the Euclidean space
Let P2 be the set of probability distributions µ on Rd with mean zero and finite second
moments such that each marginal distribution µi (i = 1, . . . , d) is absolutely continuous
with respect to the Lebesgue measure dxi on R. We say that a probability distribution
µ ∈ P2 is Stein-type if it satisfies∫

f(xi)

(
d∑

j=1

xj

)
dµ =

∫
f ′(xi)dµ, i = 1, . . . , d,

for any absolutely continuous function f : R → R with bounded derivative f ′.
Let Tcw be the set of coordinate-wise transformations T (x) = (T1(x1), . . . , Td(xd))

such that each Ti is non-decreasing. In [2], it is shown that for any given µ0 ∈ P2,
there exists T ∈ Tcw such that T♯µ0 is Stein-type. The transformation is characterized
by a minimizer of a functional

F (µ) =
d∑

i=1

∫
log

dµi

dxi

dµi +

∫
1

2

(
d∑

i=1

xi

)2

dµ,

over a fiber {T♯µ0 | T ∈ Tcw}. The fiber is totally geodesic in the L2-Wasserstein space
and F is convex with respect to displacement interpolation. The optimal map T is
applied to the problem of determining a general index in [2].

2. Generalization to manifolds
We generalize the Stein-type distributions to those on Riemannian manifolds. The
space Rd is replaced with a product space M =

∏d
i=1Mi, where each Mi is a Rie-

mannian manifold. The space P2 of distributions is defined as well. Let Tcw be the
set of coordinate-wise transformations T (x) = (T1(x1), . . . , Td(xd)) such that each
Ti : Mi → Mi is monotone. Here, Ti is said to be monotone if it is written as
Ti(xi) = expxi

∇ϕi(xi) with a cost convex function ϕi : Mi → R (see [1]). The Stein-
type distribution is defined by a minimizer of a functional

F (µ) =
d∑

i=1

∫
log

dµi

dxi

dµi +

∫
V (x)dµ,

over a fiber {T♯µ0 | T ∈ Tcw}, where V : M → R is a given function.
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[1] McCann, R. J. (2001). Polar factorization of maps on Riemannian manifolds, Geometric
and Functional Analysis, 11, 589–608.

[2] Sei, T. (2022). Coordinate-wise transformation of probability distributions to achieve a
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On LASSO and SLOPE estimators and their
pattern recovery

Tomasz Skalski1,2

1Wrocław University of Science and Technology, Poland
2LAREMA, University of Angers, France

Least Absolute Shrinkage and Selection Operator (LASSO) and Sorted `1 Pe-
nalized Estimator (SLOPE) are the regularization methods used for fitting
high-dimensional regression models. They allow to reduce the model dimen-
sion by nullifying some of the regression coefficients. Moreover, SLOPE al-
lows the further reduction by equalizing some of nonzero coefficients, which
allows to identify situations where some of true regression coefficients are
equal.
We shall introduce the notion of the pattern for LASSO and SLOPE and its
subdifferential-induced generalization to other convex penalized estimators,
which will be illustrated carefully in the case of the orthogonal design matrix.
This talk will present new results on the strong consistency of SLOPE esti-
mators and on the strong consistency of pattern recovery by SLOPE when
the design matrix is orthogonal. We shall also present the relations of LASSO
and SLOPE with root system induced convex hulls.

The research was supported by a French Government Scholarship and by
Centre Henri Lebesgue, program ANR-11-LABX-0020-0.
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Likelihood Geometry of Correlation Models

Carlos Améndola

Technical University of Berlin

We present a problem where algebra appears naturally when estimating
correlation matrices, that is, standardized covariance matrices. Concretely,
we study the geometry of maximum likelihood estimation for correlation
matrices, which form an affine space of symmetric matrices defined by setting
the diagonal entries to one.

We study the likelihood geometry for this model and linear submodels
that encode additional symmetries. We also consider the problem of min-
imizing two closely related functions of the covariance matrix: the Stein’s
loss and the symmetrized Stein’s loss. Unlike the Gaussian log-likelihood,
these two functions are convex and hence admit a unique positive definite
optimum.

Studying the critical points in all three settings leads to systems of non-
linear equations, and we compute some of the algebraic degree invariants
that measure the algebraic complexity of each optimization problem.

This is joint work with Piotr Zwiernik (University of Toronto, Canada).



Mixed convex exponential families and locally
associated graphical models

Piotr Zwiernik (University of Toronto)

Abstract

In statistical exponential families the log-likelihood forms a concave func-
tion in the canonical parameters. Therefore, any model given by convex
constraints in these canonical parameters admits a unique maximum likeli-
hood estimator (MLE). Such models are called convex exponential families.
For models that are convex in the mean parameters (e.g. Gaussian covariance
graph models) the maximum likelihood estimation is much more complicated
and the likelihood function typically has many local optima. One solution is
to replace the MLE with so called dual likelihood estimator, which is uniquely
defined and asymptotically has the same distribution as the MLE. In this talk
I will consider a much more general setting, where the model is given by con-
vex constraints on some canonical parameters and convex constraints on the
remaining mean parameters. We call such models mixed convex exponential
families. We propose for these models a 2-step optimization procedure which
relies on solving two convex problems. We show that the resulting estimator
has asymptotically the same distribution as the MLE. Our work was moti-
vated by locally associated Gaussian graphical models that form a suitable
relaxation of Gaussian totally positive distributions.

(Joint work with Steffen Lauritzen, University of Copenhagen)



Classification problem of invariant
q-exponential families on homogeneous spaces

Koichi Tojo

RIKEN Center for Advanced Intelligence Project

Abstract

Q-exponential family is a natural generalization of exponential family and
is an important subject in the fields of information geometry and statistics.
Widely used q-exponential families such as normal distributions and Cauchy
distributions have a symmetry. More precisely, the sample space can be
regarded as a homogeneous space G/H and the family of distributions on it
is G-invariant with respect to the induced G-action by pushforward. Then
the following problem naturally arises:

Classify G-invariant q-exponential families on G/H.

I would like to talk about a strategy to solve this problem using “q-
deformation” of an exponential family. Moreover, we give a new SL(2,R)-
invariant q-exponential family on the upper half plane.

This is a joint work with Taro Yoshino.



Adaptive shrinkage of singular values for a low-rank matrix mean when a covariance

matrix is unknown

Yoshihiko Konno

Department of Mathematics, Osaka Metropolitan University

Assume that m, n, p are positive integers such that min{m, n} ≥ p and that we observe

a matrix

[
X

Y

]
which is modeled as

[
X

Y

]
=

[
Ξ

0n×p

]
+ E where Ξ is an m × p

non-random matrix(unknown and its rank may be less than min{p, m}), E is an (m +

n)× p error matrix(unobservable) whose rows are identically distributed as Np(0p, Σ), a

p-variate real normal distribution with zero mean vector and covariance matrix Σ. We

assume that Σ is a p× p positive-definite and unknown matrix.

We consider the problem of estimating Ξ under a low-rank mean matrix condition, i.e.,

rankΞ = r < p; r is unknown

under a loss function L(Ξ̂, Ξ|Σ) = tr
{
(Ξ̂ − Ξ)>(Ξ̂ − Ξ)Σ−1

}
, where Ξ̂ := Ξ̂(X, Y ) is

an estimator of Ξ. Here A> and trA stand for the transpose and the trace of a square

matrix A. The risk function of R(Ξ̂, Ξ|Σ) is given by the expected value of the loss

function where the expectation is taken with respect to the joint distribution of (X, Y ).

We give Steins’s unbiased risk estimate for estimators of the form

Ξ̂ =

( p∑
j=1

hj(`j)ujv
>
j

)
(Y >Y )1/2.

Here hj : [0, ∞) → [0, ∞), (j = 1, 2, . . . , p) are absolutely continuous functions and

ULV > is the singular value decomposition of X(Y >Y )−1/2 where U = (u1, u2, . . . , up)

is an m×p matrix such that U>U = Ip (the p×p identity matrix), V = (v1, v2, . . . , vp)

is a p × p orthogonal matrix, and L is a p × p diagonal matrix whose j-th diagonal

element is given by `j. Note that we may assume that `1 > `2 > · · · > `p > 0 (almost

everywhere) with out loss of generality. Based on SURE formula, we propose an adaptive

soft-theshholding rule to the singular values `1, `2, . . . , `p. Furthermore, the results above

are extended to the complex normal distribution setup.



Expected Euler characteristic heuristic for smooth Gaussian

random fields with inhomogeneous marginals

Satoshi Kuriki
The Institute of Statistical Mathematics

10-3 Midoricho, Tachikawa, Tokyo 190-8562, Japan

kuriki@ism.ac.jp

Abstract

Expected Euler characteristic (EC) heuristic is a method for approximating the tail

probability of the maximum of a Gaussian random field. In this talk, we provide an ex-

pected Euler characteristic formula for the approximate tail probability and its relative

approximation error when the index set M is a closed manifold and the mean and variance

of the marginal distribution are not necessarily constant. When the variance is constant,

[TTA05] proved that the relative approximation error is exponentially small in a general

setting where the index set M is a stratified manifold. When the variance is not constant,

it is shown that only the subset Msupp of M , referred to as the supporting index set,

contributes to the maximum tail probability. The proposed tail probability formula is

an integral of the Euler characteristic density over Msupp, and its relative approximation

error is proven to be exponentially small as in the case of constant variance. These results

are generalizations of [KTT22], who addressed a restricted case of finite Karhunen-Loève

expansion by the volume-of-tube method. As an example, the tail probability formula

for the largest eigenvalues of noncentral Wishart matrices Wp(ν,Σ;Φ) and its relative ap-

proximation error are obtained. Numerical experience supports the high accuracy of the

expected Euler characteristic formulas regardless of whether the marginals are homoge-

neous or inhomogeneous.

Keywords: Borel’s inequality, Kac-Rice formula, noncentral Wishart distribution, volume-

of-tube method, Weyl’s tube formula.
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PATTERN RECOVERY BY SLOPE

PIOTR GRACZYK

Abstract

I will present recent results obtained in [1] jointly with M. Bogdan,
X. Dupuis, B. Ko lodziejek, T. Skalski, P. Tardivel and M. Wilczyński.

SLOPE is a popular method for dimensionality reduction in the high-
dimensional regression. Indeed, some regression coefficient estimates
of SLOPE can be null (sparsity) or can be equal in absolute value
(clustering). Consequently, SLOPE may eliminate irrelevant predictors
and may identify groups of predictors having the same influence on the
vector of responses.

The notion of SLOPE pattern allows to derive theoretical properties
on sparsity and clustering by SLOPE. Specifically, the SLOPE pattern
of a vector provides: the sign of its components (positive, negative or
null), the clusters (indices of components equal in absolute value) and
clusters ranking.

In this research we give a necessary and sufficient condition for
SLOPE pattern recovery of an unknown vector of regression coeffi-
cients.

References

[1] M. Bogdan, X. Dupuis, P. Graczyk, B. Ko lodziejek, T. Skalski, P. Tardivel,
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